BAYESIAN DECISION THEORY APPLIED TO DEEP SKY STAR IDENTIFICATION

DANIEL S. CLOUSE CURTIS W. PADGETT

JPL

APRIL 1997

CENTER FOR SPACE MICROELECTRONICS TECHNOLOGY
JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91109

Grid Algorithm Finds Spacecraft Attitude Using Small FOV Science Camera (Dim Star)

Sensor Image

Creating a Pattern

Center Grid on Center Star Orient by Nearest Neighbo

Final Pattern

Problem Statement

Identify the orientation of small FOV (field of view) science camera (2°) from a single star field image with no prior knowledge of orientation.

- Using science camera reduces weight, thus cost.
- But increases difficulty of problem:
 - 1. fewer stars in FOV
 - can fix w/ longer integration times
 - sims use all stars brighter than 10.5 mag
 - 2. more possible FOVs to choose from
- Grid algorithm works well with medium FOV (4
 Handles reasonable noise.

Goal: Make grid algorithm work with small FOV.

Why Adaptive Threshold?

- Set threshold, T, at point where P(incorrect) = P(correct)
- But the number of stars in a FOV varies greatly

• It's easier to get 10 matches out of 200 than out of 10 So T needs to vary with the number of stars in the FOV

Dynamic Algorithm Performance (L=0.5)

Advanced Systems Technology

Future Work:

Can we improve algorithm performance?

- Analytical characterization of distributions
- Bring verification into Bayesian framework

How will algorithm perform with smaller FOV?

- Requires deeper catalog
- Information proportionally less reliable

Will it work with real star images?